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Abstract

Open many body systems are difficult to solve because they obey non-equilibrium laws of physics. However,
quantum many body systems are inherently coupled to the environment, necessitating a full understanding
of non-equilibrium physics for real world applications. The Jaynes-Cummings model, consisting of a cavity
with an atom interacting with a light field, provides a suitable platform to study many body non-equilibrium
physics. In the single cavity, low photon states are achieved in the dispersive regime due to photon blockade,
where the absorption of one photon blocks the absorption of a second. When open to the environment,
the breakdown of this photon blockade sets in through dispersive bistability, where the cavity can reach
two distinct stable solutions. We implement mean field theory to derive semiclassical equations which
locate parameter regimes of bistability. Numerical solutions of the Lindblad master equation do not predict
bistability directly, but unfolding the master equation into quantum trajectory calculations demonstrates
switching between the semiclassical solutions. We then consider open systems of weakly interacting Jaynes-
Cummings cavities. The bistability of the single cavity facilitates the emergence of symmetry-breaking states
in multiple cavity systems, where the cavities achieve different steady states despite their coupling. Analysis
of the two cavity system using quantum trajectories shows qualitative differences between symmetry-breaking
and symmetry-preserving states. In the three cavity case, the symmetry-breaking bistability region extends
past the critical point of typical symmetry-preserving bistability. The results for multiple Jaynes-Cummings
cavities build towards a better understanding of open many body quantum physics.

Keywords: Quantum Physics, Cavity QED, Optical Bistability



2

Acknowledgments

I would like to thank my project advisors Professors Seth Rittenhouse and Joel Helton for their expertise
and guidance leading up to and over the course of this project. I would also like to thank Professor Ryan
Wilson, who piqued my interest in theoretical physics and set me down this research path over two years
ago. Finally I would like to thank the Trident Committee here at the Naval Academy, as well as the Office
of Naval Research, for the opportunity to embark on this research project.

Contents

I. Introduction 3

II. Background 3
A. Jaynes-Cummings Model 3
B. Photon Blockade 4

III. Methods 5
A. Master Equation 5
B. Semiclassical Equations 6
C. Quantum Trajectories 6

IV. Single Cavity 7
A. Dissipative vs Non-Dissipative 7
B. Dissipative Quantum Phase Transition 8
C. Bistability with Spontaneous Emission 8
D. Dispersive Bistability 9

V. Jaynes-Cummings Dimer 10
A. Expanded Hamiltonian and Operators 10
B. Equilibrium Dynamics 11
C. Symmetry-Breaking Bistability 12
D. Mean Field Phase Diagram 13
E. Dispersive JC Dimer 14

VI. Three Cavity System 16
A. Three Cavity Bistability Phase Diagram 16
B. Onset of Spin Frustration 17

VII. Conclusion 19

References 20

Appendix A. Hamiltonian Diagonalization 21

Appendix B. Single Cavity Semiclassical Equations 22
A. Necessary Equations 22

1. Driven Jaynes-Cummings Cavity Hamiltonian 22
2. Lindblad Master Equation 22

B. Equation of Motion for α = 〈â〉 22
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I Introduction

Although the fundamental concepts behind quan-
tum mechanics have been around for almost a cen-
tury, there is still much to be learned about the
physics of the extremely small. The laws of the
subatomic world are difficult to comprehend be-
cause they do not agree with the classical laws of
physics we experience and observe directly. Al-
though they often defy common sense, the laws of
quantum physics can be explained mathematically
and have been demonstrated experimentally. Much
of the technology we use today relies on our knowl-
edge of quantum mechanics, which has improved
vastly over the past few decades. As our knowl-
edge of the fundamental laws of the subatomic world
grows, so does our ability to use it for various appli-
cations.

For any realistic application of quantum mechan-
ics, an open system must be considered where cou-
pling occurs between the quantum system and its en-
vironment. This is because it is impossible to create
a perfectly isolated, or closed, quantum system, even
in heavily controlled laboratory experiments [1]. As
a result, quantum systems typically lose their coher-
ence on relatively short timescales. This decoherence
is one of the largest obstacles to storing and manip-
ulating information with quantum systems. While
coupling to the environment is unavoidable and de-
stroys coherence, over the past few decades the abil-
ity to control that system-environment coupling has
vastly improved, especially in the field of quantum
optics [2–6]. Studying these controlled open sys-
tems has led to the development of non-equilibrium
laws of physics, as opposed to the typical equilib-
rium physics seen in closed and classical systems. In
non-equilibrium physics, quantities such as energy
and momentum are not necessarily conserved due
to uncontrollable dissipation into the environment.
In the absence of well-understood equilibrium laws,
these systems difficult to understand and describe
mathematically.

Of particular interest in this project is the ap-
plication of non-equilibrium physics to a many body
model, which describes a system of coupled quantum
systems, which are each coupled to the environment
through drive and dissipation as well. The Jaynes-
Cummings (JC) model provides a useful platform for
studying and understanding non-equilibrium physics
for single and few-body models, and eventually a
many body model. The JC model, which consists of
photons and an atom coupled in a cavity, is partic-
ularly useful for exploring light-matter interactions
[7]. Quantum phenomena exhibited by this model
such as photon blockade and optical bistability have
been studied and demonstrated experimentally [5–

13]. The systems parameters which govern the be-
havior of the model have been examined in vari-
ous limits, such as the strong and weak coupling
regime or dispersive regime [8, 11]. The JC cav-
ity in the strong-coupling regime has been proposed
as an advantageous architecture for superconduct-
ing qubits for the purpose of quantum computation,
due to experimental success in suppressing decoher-
ence of the qubit while allowing one-bit operations
[14]. The dynamics and properties of the two cavity
JC dimer have also been examined, particularly the
delocalization-localization dynamical phase transi-
tion in both equilibrium and non-equilibrium sys-
tems [3, 15].
Other quantum systems comparable to the JC

model have been studied in the many body limit,
such as the Bose-Hubbard and Dicke models [16–18].
Much of the focus of these studies has been on iden-
tifying quantum phase transitions in the absence of
dissipation, such as between a Mott-insulating phase
and a superfluid phase [19–21]. Circuits of micro-
cavities have been realized experimentally in order
to better understand these phases [22–26].
In the following, we explore the various proper-

ties of the single cavity JC model and how they
are affected when scaled up to two cavity and three
cavity system. Section II discusses the background
and basic physics of the single JC cavity, includ-
ing the simplest case of photon blockade. In Sec-
tion III, the mathematical methods used through-
out the paper are explained in detail. These meth-
ods are used to compare full quantum treatment us-
ing the master equation and quantum trajectories
with mean field theory using semiclassical equations
to provide a comprehensive description of the sin-
gle cavity JC model in Section IV. The properties
and characteristics of the single cavity are then ex-
plored for the JC dimer in Section V, which consists
of two weakly interacting cavities. Results show-
ing the emergence of symmetry-breaking states as a
product of optical bistability are discussed. In Sec-
tion VI, the three cavity array is described using
semiclassical treatment, and we develop a phase di-
agram depicting bistability and symmetry-breaking
behavior in the parameter space of cavity coupling
and drive strength. The results for all three systems
are summarized in Section VII.

II Background

A. Jaynes-Cummings Model

The JC model consists of a two-level atom that
interacts with light inside a cavity. The light is as-
sumed to be of a single mode with frequency ωc, so
that each photon has an energy of E = �ωc, while
the two energy levels of the atom are separated by
ΔEa = �ωa. As a two-state system, the atom can be
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modeled with a spin-1/2 system, where spin up cor-
responds with the upper energy level and spin down
corresponds with the lower energy level. The cavity
light and atom exchange energy through the absorp-
tion and emission of photons. An atom in the spin
down state can absorb a photon and transition to the
spin up state, or an atom in the spin up state can
emit a photon to the cavity light, transitioning to the
spin down state. The rate of photon-spin exchange
is reflected by the atom-light coupling coefficient g.

The Hamiltonian is an operator used in quantum
mechanics to describe the total energy of a system.
For the closed JC model, the total energy is a sum-
mation of three terms: the energy of the cavity light,
the energy of the two-level atom, and the interaction
energy between the atom and light. As an operator,
the Hamiltonian is

Ĥ = �ωaσ̂
+σ̂− + �ωcâ

†â+ �g(â†σ̂− + âσ̂+) (1)

The spin operators, σ̂+ and σ̂−, raise and lower
the spin, or energy state, of the atom. The photonic
creation and annihilation operators, â† and â, add
or remove a photon from the cavity light. The ap-
plication of the raising and lowering operator on a
state returns the value of the respective operators’
observable. For example:

σ̂+σ̂−|n, s〉 = s|n, s〉
â†â|n, s〉 = n|n, s〉 (2)

Where for a state |n, s〉, n is the number of pho-
tons in the cavity and s is the spin-state of the atom.
The interaction term of the Hamiltonian comes from
the exchange of energy between the atom and the
light. The â†σ̂− term corresponds with the emission
of a photon from the atom to the cavity light, and
the âσ̂+ term corresponds with the absorption of a
photon from the cavity light to the atom.

Light-matter interactions can be studied in equi-
librium using the closed JC model, as seen in for the
JC dimer in Section V, but for realistic applications
an open model must be understood. The system
experiences loss through two decay channels: cav-
ity loss when photons tunnel through the walls of
the cavity, and spontaneous emission when the atom
emits photons that do not enter the cavity field. To
counter this dissipation, the cavity is driven with
an external photon source such as a laser, with a
drive strength reflected by the coefficient E . The
laser may have its own frequency, ωd, separate from
the cavity field and atom. The schematic for the
driven-dissipative JC model is shown in Figure 1

FIG. 1: Driven-Dissipative Jaynes Cummings Model:
The cavity light and the two-state atom can exchange
energy. The cavity is driven externally to add photons
in order to counter dissipation from cavity loss and
spontaneous emission

For the driven-dissipative model, it is convenient
to use the interaction picture which drops rapidly
oscillating terms that violate conservation of energy
[8, 9]. The driven-dissipative Hamiltonian becomes

ĤJC = �Δωaσ̂
+σ̂− + �Δωcâ

†â

+�g(â†σ̂− + âσ̂+) + �E(â+ â†)
(3)

With the drive detunings Δωa = ωd − ωa and
Δωc = ωd − ωc. When the frequency of the atom
matches the frequency of the cavity, ωa = ωc, the
system is considered on resonance. Much of this
paper will consider the on-resonance case, so that
Δωc = Δωa = Δω. The system is dispersive if the
detuning δ = ωc − ωa is nonzero. If the drive fre-
quency matches that of the cavity, Δωc = 0, the sys-
tem is driven on resonance. Each of these regimes is
considered at some point in this paper.

B. Photon Blockade

In certain parameter regimes of the JC model, the
absorption of a single photon by the system can im-
pede the absorption of additional photons. This con-
cept, known as photon blockade, is seen in strongly
nonlinear quantum optics systems, where the quan-
tum energy ladder becomes anharmonic. This ef-
fect is easily understood in the closed system, with
no drive or dissipation, and in the non-dispersive
regime ωc = ωa = ω0. Diagonalization of the Hamil-
tonian, shown in Appendix A, produces energy dou-
blets split by a factor of

√
n�g. This means a cavity

with n photons is either in an upper or lower state,
and the energies of those states are:

En,U = n�ω0 +
√
n�g

En,L = n�ω0 −
√
n�g

(4)

The splitting of these energy levels is dependent on
the atom-light coupling strength, g. The nonlinear√
n splitting detunes the energy ladder of the system

enough to prevent additional energy from entering
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the system. The lowest levels of the energy ladder
are shown in Figure 2, starting from a vacuum state
with zero energy.

FIG. 2: Photon Blockade: The transition from E0 to
E1,L (blue) is detuned from the transition to E2,L (red)
by a difference of (2−√2)�g

If a photon is to be added to the system, it must
have a frequency matching a jump to another valid
energy level. For the smallest possible jump, from
E0 to E1,L, the photon must have a frequency of
�(ω0 − g). The next jump, from E1,L to E2,L, re-

quires a photon of frequency �(ω0− (
√
2−1)g). The

difference between these two jumps, �(2−√2)g, pre-
vents the absorption of a second photon for large
coupling values relative to ω0. A second photon with
the same frequency as the one used to make the first
jump will not be absorbed because it does not reach
the next energy level.
The concept of photon blockade can be extended

to a multiphoton blockade for states other than the
vacuum state, higher on the energy ladder [8]. How-
ever, the effect of photon blockade is strongest for
low photon numbers. Photon blockade occurs be-
cause the energy splitting for adjacent energy lev-
els is different. However, for large n, the difference
between

√
n and

√
n+ 1 is negligible, so transitions

between energy levels through the absorption of pho-
tons are not as restricted. This breakdown of photon
blockade as a dissipative quantum phase transition
is explored in Section IV and more thoroughly by
Carmichael in Ref. [8]. The nonlinearity that re-
sults in photon blockade is an important character-
istic of the JC model that also gives rise to optical
bistability, as seen in Section IV.

III Methods
This paper utilizes three methods to analyze the

behavior of JC cavities. First, the Lindblad master
equation is used to evolve a density matrix to steady
state. Then semiclassical mean field equations are
used to determine steady states in the absence of

quantum fluctuations. Finally quantum trajectories
are used to demonstrate how quantum fluctuations
cause switching between the semiclassical solutions
in regimes where mean field theory applies.

A. Master Equation

The Hamiltonian is an effective tool by itself to de-
scribe a closed system, as it represents the total en-
ergy of the system. Open systems, however, lose en-
ergy to the environment, requiring another method
to account for dissipation. Master equations evolve
a density matrix ρ in time, which is defined as

ρ :=
∑
n,s

ρn,s|n, s〉〈n, s| (5)

Where the coefficients ρn,s add up to one. Expec-
tation values of the system, such as those for photon
number and spin state, can be determined by taking
the trace of the density matrix acted on by the ap-
propriate operators. For example, the expectation
value of the number of photons can be calculated as

〈â†â〉 = 〈n̂〉 = Tr[â†âρ] (6)

Rather than describing an individual system, the
density matrix represents an ensemble of identically
prepared systems, so that observables extracted
from the density matrix are an average expectation
value of an ensemble. When a system has multiple
steady states, such as in a bistable regime, the expec-
tation values taken from its density matrix are av-
erages of those states. Therefore the density matrix
by itself cannot be used to locate bistable regions,
or provide useful insight about the different steady
states. Nevertheless, the master equation includes
the effects of quantum fluctuations in its time prop-
agation which makes it a valuable tool for describing
open quantum systems such as the JC model.

The Lindblad master equation accounts for in-
teractions between the system and its environment
through dissipation. In the JC master equation,
there are two dissipation terms: one for cavity loss
at rate 2κ and one for spontaneous emission at rate
γ. The resulting single JC model master equa-
tion, which we numerically solve using a fourth-order
Runge-Kutta algorithm, is

dρ

dt
=

1

i�

[
ĤJC , ρ] + κ(2âρâ† − â†âρ− ρâ†â)

+γ/2(2σ̂−ρσ̂+ − σ̂+σ̂−ρ− ρσ̂+σ̂−)
(7)
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B. Semiclassical Equations

In addition to its shortcomings in providing in-
sight about bistability, evolving the master equation
becomes very inefficient for large systems with many
possible states. The dimensions of the density ma-
trix scale as (2N)m for m cavities truncated to a N
photon maximum. The number of elements calcu-
lated for each time step grows exponentially with the
photon maximum, and even faster with each addi-
tional cavity. In order to describe even two or three
cavity systems truncated to relatively small photon
numbers, the master equation becomes slow and in-
efficient. Since this paper aims to build towards un-
derstanding the many body JC model, other meth-
ods besides the master equation are required.

Rather than evolve a large density matrix until it
reaches steady state, equations of motion for expec-
tation values themselves can be derived through the
implementation of mean field theory. The deriva-
tions of the equations of motion for the following
three expectation values are shown in Appendix B:
α = 〈â〉, β = 〈σ̂−〉, and ζ = 〈σ̂z〉

dα

dt
= −(κ− iΔωc)α− igβ − iE

dβ

dt
= −(γ/2− iΔωa)β + igαζ

dζ

dt
= −γ(ζ + 1) + 2ig(α∗β − αβ∗)

(8)

Including the equations for the complex conju-
gates α∗ and β∗, there are five equations that are
solved to steady state, regardless of system size: a
significant improvement over the master equation for
systems with many photons or cavities (ζ is always
real, so that ζ∗ = ζ). However, mean field the-
ory averages all quantum fluctuations, which means
there is a trade off when using these semiclassical
equations. Mean field theory cannot fully describe
a quantum system, especially in parameter regimes
where quantum fluctuations dominate. Regardless,
these semiclassical equations provide insight into the
nature of quantum systems, which can be enhanced
when combined with insight from other methods
such as evolving the master equation or quantum
trajectories.

Much of this paper concentrates on the strong cou-
pling regime, where atom-light coupling g is much
larger than the dissipation rates κ and γ. In order
to efficiently compare mean field theory solutions to
the master equation, we assume cavity loss is the
dominant decay channel, so γ = 0. Without spon-
taneous emission, the spin of the atom is conserved
[8], so that 4|β|2 + ζ2 = 1. Eliminating ζ from the
above equations, we have

dα

dt
= −(κ− iΔω)α− igβ − iE

dβ

dt
= iΔωβ ± igα

√
1− |β|2

(9)

The on-resonance case is considered here, so that
Δωc = Δωa = Δω. Setting these time derivatives to
zero allows us to solve for their steady state values

β =
±gα√

Δω2 + 4g|α|2 (10)

α =
−iE

κ− i(Δω ∓ g2√
Δω2+4g2|α|2 )

(11)

The analytic steady state equations have two so-
lutions, each stable in their own parameter regime.
For positive drive detuning, Δω > 0, the top sign
corresponds with the stable solution. For negative
drive detuning, they are stable when the bottom sign
is used. For large photon numbers, where the effects
of photon blockade are negligible, an equation for
mean photon number can be derived

n = α∗α =
E2

κ2 + (Δω ∓ g
2
√
n
)2

(12)

See Section II for other uses of the semiclassical
equations for the single JC cavity.

C. Quantum Trajectories

An alternative to the master equation and semi-
classical equations, quantum trajectories numeri-
cally simulate the dynamics of dissipative quantum
systems. The time-propagation of the density ma-
trix according to the master equation is really an
ensemble of individual quantum trajectories. Rather
than propagating a (2N)m by (2N)m matrix in time,
an individual quantum trajectory propagates a state
vector of size (2N)m in time. Although not explicitly
shown here, the averaging of many quantum trajec-
tories produces the same results of a master equation
for the same quantum system [1]. Quantum tra-
jectories in bistable regimes can exhibit switching
between steady state solutions of the semiclassical
equation, demonstrating agreement between mean
field solutions and exact solutions with full quantum
treatment through the master equation.
The Hamiltonian in Eq. (3) used in the master

equation is Hermitian, an important requirement
for non-dissipative systems. For the purposes of
quantum trajectories, it is convenient to rewrite the
master equation with a non-Hermitian Hamiltonian,
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which includes dissipative terms that result in the
depreciation of the wavefunction’s norm 〈ψ(t)|ψ(t)〉
dρ

dt
=

1

i�

[
Ĥeffρ− ρĤ†

eff] + 2κâρâ† + γσ̂−ρσ̂+ (13)

Ĥeff = ĤJC − i

2
(2κâ†â+ γσ̂+σ̂−) (14)

The effective Hamiltonian is then used to propa-
gate a wavefunction, |ψ(t)〉 = |n, s〉 according to the
Schrodinger equation.

i�
d

dt
|ψ(t)〉 = Ĥeff|ψ(t)〉 (15)

In this method, the operators in the dissipation
terms are called jump operators, because they are
used to model random quantum jumps [1]. As
the wavefunction evolves according to the modified
Schrodinger equation, quantum jumps occur where
the wavefunction changes discontinuously. Since the
effective Hamiltonian is non-Hermitian, the norm of
the wavefunction 〈ψ(t)|ψ(t)〉 is not conserved, grad-
ually decreasing from 1 to 0. The probability of
a quantum jump occurring is related to the norm
of the wavefunction in that the smaller the norm,
the more likely a quantum jump will take place. To
model this, a pseudo-randomly generated number r
is generated between 0 and 1 and compared to the
norm. When the norm falls below this number, a
quantum jump occurs. If the wave function under-
goes a photon number jump, the new state of the
wavefunction becomes

|ψ(t)〉 =
√
(2κ)â|ψ(t)〉

〈ψ(t)|2κâ†â|ψ(t)〉 (16)

Each quantum jump renormalizes the wavefunc-
tion, so that it evolves according to the modified
Schrodinger equation again until the norm once
again falls below a new randomly generated num-
ber, at which point another quantum jump occurs.
The norm decreases due to the non-Hermitian dis-

sipation terms in the effective Hamiltonian. Systems
with high dissipation rates will lose wavefunction
normalization quicker than systems with low dissi-
pation rates, depending on the state of the wavefunc-
tion. Therefore quantum jumps occur more often for
systems with high dissipation rates. The likelihood
of a given quantum jump occurring through a spe-
cific decay channel also depends on the dissipation
rates. For the single JC model, there are only two
possible jumps. The probabilities that a quantum
jump is either through spontaneous emission Ps or
cavity loss Pc are calculated in the following manner.

Ps =
γ〈ψ(t)|σ̂+σ̂−|ψ(t)〉

γ〈ψ(t)|σ̂+σ̂−|ψ(t)〉+ 2κ〈ψ(t)|â†â|ψ(t)〉

Pc =
2κ〈ψ(t)|â†â|ψ(t)〉

γ〈ψ(t)|σ̂+σ̂−|ψ(t)〉+ 2κ〈ψ(t)|â†â|ψ(t)〉
(17)

Similar to determining when a quantum jump oc-
curs, the type of quantum jump is determined by
randomly generating a number between 0 and 1 and
comparing it to one of the above probabilities. The
jump then occurs according to Eq 16 for the jump
operator chosen, and the process repeats.
Scaling quantum trajectories up to multiple cavi-

ties faces the same problems as the master equation,
although to a lesser degree. Since individual trajec-
tories only propagate a vector rather than a matrix,
the number of calculations does not increase expo-
nentially with system size. However, system size it-
self still increases exponentially with the number of
cavities in the system, making quantum trajecto-
ries inefficient for systems with many cavities. True
many body systems will primarily be modelled with
mean field theory.

IV Single Cavity

A. Dissipative vs Non-Dissipative

Quantum systems are never truly isolated from
the environment, which makes the study of open
quantum systems important. Although the effects
of dissipation cannot be eliminated, a major focus
in quantum optics for the past three decades has
been on controlling the coupling between quantum
systems and the environment. Rather than attempt
to fully isolate quantum systems, experiments have
focused on manipulating the environment to drive
systems into desired quantum states. Systems that
are weakly coupled to the environment can be un-
derstood both experimentally and theoretically with
the use of numerical methods such as the master
equation and quantum trajectories. Comparison of
dissipative and non-dissipative solutions for the sin-
gle JC model are shown in Figure 3
For systems driven near resonance, there is a clear

qualitative difference between the non-dissipative
and dissipative solutions. The dissipative system
tends towards a vacuum state with no photons as
the drive frequency approaches resonance, while the
non-dissipative system experiences a sharp increase
in photon number. The dissipative system also ex-
hibits peaks in photon number due to photon block-
ade. Single photon blockade, as discussed in Section
II, occurs at Δω = g = 50. At such a low drive
strength, the blockade effect causes a peak due to
the easy absorption of the first photon, but does not
allow for the absorption of more photons due to the
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FIG. 3: Comparison of non-dissipative and dissipative
solutions for g = 50, E = 5. The dissipative solution was
calculated using the master equation with κ = 1, γ = 0.
Non-dissipative solution was calculated by solving for
the ground state through diagonalizing the Hamiltonian.

detuning from the next energy level. Each peak at
lower values of Δω also corresponds to a multipho-
ton blockade. For higher drive strengths and lower
drive detunings, the multiphoton blockades begin to
merge together into a blockade region, which sepa-
rates high photon states from low photon states. In
the absence of weak dissipation, the presence and
effect of these multiphoton blockades would not be
apparent. However, they are critical in understand-
ing the phase transition from low to high photon
number states, which is discussed below.

B. Dissipative Quantum Phase Transition

At higher drive strengths and lower drive detun-
ings where Δω is near 0, there is a sharp transition
between the vacuum state and high photon number
states. The region between these two states is domi-
nated by a photon blockade region. Carmichael dis-
cusses a dissipative quantum phase transition in this
region in detail [8]. The mean photon number cal-
culated from Eq 12 is plotted as a function of drive
strength and detuning in Figure 4, reaching excel-
lent agreement with Carmichael’s results from solv-
ing the Lindblad master equation to steady state.
The red line marks the peak photon number for a
given drive strength, located at Δω/κ = ±g/2E .
The peak photon number is identical to that of an
empty cavity with no atom, n = (E/κ)2.
Carmichael locates a critical point for zero drive

detuning when E/κ = g/2 = 25, where the energy
spectrum of the system collapses from discrete levels
to a continuous spectrum [8, 27]. Below this drive
strength and driven slightly off resonance, a region
of photon blockade separates the vacuum state with

FIG. 4: Mean photon number as function of drive
strength E/κ and detuning Δω/κ for g/κ = 50. The red
lines denote location of peak photon number for given
drive strength, located at Δω/κ = ± g

2E

no photons from the high photon number states,
as mentioned above. In this parameter regime, the
transition from low photon number to high photon
number states occurs through a cascade of multi-
photon transitions that break down the blockade
slowly. While the semiclassical equations fail to pre-
dict optical bistability as discussed in the next sec-
tion, Carmichael provides evidence for the coexis-
tence of the vacuum state and high photon number
states in the region of photon blockade [8].

C. Bistability with Spontaneous Emission

The previous section assumed a resonant JC
model, where Δωc = Δωa = Δω, and that sponta-
neous emission was negligible (γ = 0). Such condi-
tions do not result in the typical absorptive optical
bistability seen in cavity QED. Spontaneous emis-
sion from the atom to other modes besides that of
the cavity breaks the conservation law that led to
the self-consistent Equations (10), (11), and (12).
The inclusion of spontaneous emission and the loss
of spin conservation leads to a new analytic steady
state equation for α [8]

α =
−iE

κ− iΔω + g2(γ/2+iΔω)
γ2/4+Δω2+2g2|α|2 )

(18)

This equation can be rewritten as the typical state
equation for the JC model, which relates the external
drive strength to the number of photons in the cavity

E = iα(κ− iΔω +
g2(γ/2 + iΔω)

γ2/4 + Δω2 + 2g2|α|2 ) (19)

The state equation allows for multiple values of
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α for a given drive strength E . For certain param-
eter values, there can be as many as three possible
solutions for a given drive strength, as seen in Fig-
ure 5. This region is one of optical bistability, as
the high photon number and low photon number
states are stable while the middle solution is unsta-
ble. It is important to note that bistability only
occurs when drive and dissipation are included; the
presence of two stable solutions as well as the abil-
ity to switch between them is due to interaction with
the environment. The master equation is also shown
to demonstrate agreement between the full quantum
treatment of the master equation and the semiclas-
sical equations derived from mean field theory which
ignores quantum fluctuations.

FIG. 5: Comparison of the state equation bistability
curve to the master equation solutions for
g/κ = 30,Δω/κ = 0, γ/κ = 144

While the master equation agrees with the state
equation for drive strengths to the right and left of
the bistability region, it cuts through the bistable so-
lutions without displaying bistability itself. This is
due to the nature of Lindblad master equation prop-
agation, where the density matrix contains statisti-
cal information about an ensemble of identically pre-
pared states that each undergo a stochastic process.
Each state in the ensemble might exhibit switching

between the bistable solutions at various times, with
the steady state density matrix reflecting an aver-
age over states in the ensemble. Therefore the mean
photon number according to the master equation is
effectively a weighted average of the two stable solu-
tions. Propagating the semiclassical equations, Eq.
(8), recovers the same bistability as demonstrated
by the state equation when initialized appropriately.
A system initialized near the low photon number
reaches its steady state at the lower solution, while a
system initialized near the high photon number solu-
tion will stabilize at the higher solution. The middle
solution, which is unstable, will never be reached by
propagating the semiclassical equations.
In the absence of spontaneous emission,

Carmichael explored the coexistence of two
states where quantum fluctuations between the two
states results in a mean photon number somewhere
between the two states. In the regime considered
by Carmichael, mean field theory fails to predict
this coexistence of states [8]. However, with
spontaneous emission turned on, the semiclassical
equations accurately predict bistable solutions in
the absence of quantum fluctuations.

D. Dispersive Bistability

Bistability is also observable in the dispersive
regime, where Δωc �= Δωa, or δ �= 0. In the strongly
dispersive regime, where δ � g, mean field predic-
tions of bistability match up well with full quan-
tum treatment. The state equation derived from
the semiclassical equations of Eq. (8), when solved
in terms of Δωc and δ, can be approximated well to
the saturable extension of the Kerr model [8, 11]

E = iα(κ− i(Δωc − g2

δ
(1 +

4g2

δ2
|α|2)−1/2) (20)

In this strongly dispersive regime, quantum tra-
jectories using the method discussed in Section III
display switching between the bistable solutions pre-
dicted by the state equation. An individual trajec-
tory shown in Figure 6(c) demonstrates how quan-
tum fluctuations induce switching between the two
mean field solutions for a given drive strength.



10

FIG. 6: (a) Semiclassical state equation compared with master equation for δ/κ = 1000, Δωc/κ = 18, g/κ = 150,
γ/κ = 0.084 with the blue dashed line marking the drive strength used for the quantum trajectory shown in panels(b)
and (c). (b) Distribution of photon number at each time step in single quantum trajectory with 500,000 time steps
(c) Quantum trajectory for same parameters as panel (a) with E/κ = 3.3. The yellow solid lines across all three
figures give photon number stable solutions as predicted from the state equation for the parameters given

The mean field semiclassical solutions find excel-
lent agreement with the full quantum solutions us-
ing the master equation and quantum trajectory. In
this parameter regime, quantum fluctuations do not
significantly affect the bistable solutions but rather
cause flopping between them. Fluctuations in pho-
ton number oscillate more near the upper bistable
solution due to coupling with the atom, while the
lower bistable solution does not oscillate as much
due to a near vacuum of photons, so that the atom
cannot easily absorb and emit photons. The approx-
imations made to develop the semiclassical and state
equations results in only a slight overprediction of
the upper solution and underprediction in the lower
solution.

V Jaynes-Cummings Dimer

The next logical step in moving towards a many
body model is describing a system of two coupled
cavities, each with their own cavity field and two-
level atom. This paper only considers inter-cavity
coupling through the cavity fields, so that photons
can effectively hop between cavities but the spins do
not interact with each other directly. The disper-
sive bistability and bistability due to spontaneous
emission are both extended to the two cavity model
using the same methods as in Section IV, although
the master equation and quantum trajectories take
significantly longer to propagate. The bistable re-
gion in the two cavity region gives rise to symmetry-
breaking states when the cavities are weakly cou-
pled. Although the cavities are free to exchange

photons, they reach two distinct steady states. Al-
though quantum fluctuations still lead to switching
between stable solutions as they did in the single
JC model, the semiclassical equations show regions
of stable symmetry-breaking states, effectively turn-
ing the bistable region into a multistable region with
four stable solutions.

A. Expanded Hamiltonian and Operators

Before discussing the results and properties of the
two cavity system, it’s worth noting the effect of
the combining states of two cavities on the opera-
tors and density matrix, as well as the methods dis-
cussed in Section III. The dimensions of the density
matrix and all operators correspond to the number
of combinations of all possible spin states (2 for each
cavity), and photon number (up to the truncated
number N for each cavity). In moving from a single
cavity model to a two cavity model, the dimensions
increase from a (2N)1 by (2N)1 matrix, to a (2N)2

by (2N)2 matrix. In order to compare mean field
theory results with the master equation and quan-
tum trajectories, this section focuses on parameter
regimes with low photon numbers.
The Hamiltonian for all systems of made up of

quantum elements is the summation of each indi-
vidual element’s Hamiltonian along with any inter-
action terms between them. In the two cavity JC
system, the Hamiltonian becomes

Ĥ2cav = Ĥ1 + Ĥ2 − J(â†2â1 + â†1â2) (21)

The subscripts indicate which cavity the individ-
ual Hamiltonian is for, using either Eq. (1) for an
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isolated system or Eq. (3) for a driven-dissipative
system. The rate at which photons transfer between
cavities is reflected by the cavity coupling J . The

interaction terms make intuitive sense: â†2â1 adds
a photon to cavity two and removes a photon from

cavity one, and â†1â2 does the opposite.
The Lindblad master equation is developed in the

same manner, with dissipation terms for cavity loss
and spontaneous emission for both cavities.

dρ

dt
=

1

i�

[
Ĥ2cav, ρ] +

∑
i=1,2

κ(2âiρâ
†
i − â†i âiρ− ρâ†i âi)

+
∑
i=1,2

γ

2
(2σ̂−i ρσ̂

+
i − σ̂+

i σ̂
−
i ρ− ρσ̂+

i σ̂
−
i )

(22)

The extension to the effective Hamiltonian used
in quantum trajectories is straightforward as well,
becoming

Ĥeff,2cav = Ĥ2cav −
∑
i=1,2

i

2
(2κâ†i âi + γσ̂+

i σ̂
−
i ) (23)

With four possible decay channels, the probabil-
ities for four types of quantum jumps must be cal-
culated instead of two. Once the norm falls below
the randomly generated number, indicating a quan-
tum jump, the probability of a quantum jump due
to spontaneous emission in the first cavity is

Pa1 =
γ〈σ̂+

1 σ̂
−
1 〉

γ(〈σ̂+
1 σ̂

−
1 〉+ 〈σ̂+

2 σ̂
−
2 〉) + 2κ(〈â†1â1〉+ 〈â†2â2〉)

(24)

Where expectation values are 〈σ̂+
i σ̂

−
i 〉 =

〈ψ(t)|σ̂+
i σ̂

−
i |ψ(t)〉 and 〈â†i âi〉 = 〈ψ(t)|â†i âi|ψ(t)〉.

Probabilities for the other three types of quantum
jumps are calculated in the same manner.
The semiclassical equations change slightly, with

an additional cavity coupling term in the equations
for αi. This method now solves for the steady states
of ten equations, including the equations for the
complex conjugates α∗i and β∗i . The semiclassical
equations for cavity one are

dα1

dt
= −(κ− iΔωc)α1 − igβ1 − iE − iJα2

dβ1

dt
= −(γ/2− iΔωa)β1 + igα1ζ1

dζ1
dt

= −γ(ζ1 + 1) + 2ig(α∗1β1 − α1β
∗
1)

(25)

B. Equilibrium Dynamics

Understanding the equilibrium dynamics of the
two cavity system gives some insight into the behav-
ior of the driven-dissipative model. For the following

dynamics, drive and dissipation are considered neg-
ligible, so that E = κ = γ = 0. Without interaction
with the environment, energy is conserved for the
system. Energy can be stored in each cavity field
and each atom, so that the conserved quantity is

N = n1 + n2 + s1 + s2

N = 〈â†1â1〉+ 〈â†2â2〉+ 〈σ̂+
1 σ̂

−
1 〉+ 〈σ̂+

2 σ̂
−
2 〉.

(26)

Another useful quantity for the two cavity system
is the photon imbalance, Z, which tracks the differ-
ence in photon numbers between the two cavities.

Z =
n1 − n2

N
(27)

Z ranges from -1 to 1, where a value of 1 indi-
cates all photons in the system are in cavity one and
none are in cavity two, and a value of -1 indicates
the opposite. Photon imbalance of Z = 0 indicates
the photons are evenly distributed. This quantity is
particularly useful for characterizing the localization
of photons.
There are two competing coupling terms in the

two cavity system: the atom-light coupling g, and
the cavity coupling J . The equilibrium dynamics of
the two cavity system are qualitatively different de-
pending on which type of coupling dominates. The
time evolution of photon imbalance for the strong
atom-light coupling regime and weak atom-light cou-
pling regime are compared in Figure 7

FIG. 7: Time evolution of photon imbalance for strong
and weak atom-light coupling compared to cavity
coupling for E/J = κ/J = 0, ωa = ωc = J . System was
initialized with N = n1 = 6 so that Z0 = 1

When atom-light coupling dominates, the photons
are effectively trapped in the first cavity. The rapid
oscillations in photon imbalance are due to the ex-
change of energy between the first cavity’s atom and



12

cavity field. The coupling between the cavity field
and the atom prevents coupling between both cav-
ity fields, so that photons cannot easily hop to the
second cavity. On long time scales, the photon im-
balance inverts so that all photons become trapped
in the second cavity. However, these time scales are
long enough that when compared to the weak atom-
light coupling regime, the photons can be considered
localized.
When the cavity coupling dominates, i.e. in the

weak atom-light coupling regime, photons easily hop
between cavities. There is still an exchange of energy
between the cavity field and atom of each cavities,
but the atom-light coupling is unable to ”trap” the
photons. Over long time scales, the photon imbal-
ance continues to oscillate near a value of 0, so that
the photons can be considered delocalized.
Since there are two dynamical states of photons,

localized or delocalized, a dynamical phase transi-
tion can be identified between the weak and strong
atom-light coupling regimes. This transition is anal-
ogous to the one studied in the many body JC and
Bose-Hubbard models, where photons in the Mott-
insulator phase are considered localized and photons
in the superfluid phase are considered delocalized.
When the time-averaged photon imbalance is plot-
ted as a function of atom-light coupling, as shown
in Figure 8, the transition from delocalized to local-
ized photons is obvious. Schmidt et al. locate the
phase transition at a critical value of g, also shown
in Figure 8 [15]

gcrit ≈ 2.8
√
NJ (28)

FIG. 8: Dynamical phase transition from delocalized to
localized regimes. System was initialized with
N = n1 = 6, so that gcrit/J = 6.86. The discontinuities
below gcrit are due to the effects of time averaging over
relatively short time scales.

Although these exact equilibrium dynamics may
never be realized experimentally, they play a role in

non-equilibrium steady states as well. The bistabil-
ity seen in the single cavity is considered a prod-
uct of the nonlinearity introduced to the system
by the atom-light coupling g, as discussed in the
photon blockade part of Section II. In this sec-
tion, a different type of bistability occurs within
the localized regime. The photons can either be
trapped in one cavity or the other, giving two sta-
ble solutions, but only when g dominates. If these
states are achieved as steady states of the driven-
dissipative system, the symmetry of the system is
considered broken. When the cavity coupling dom-
inates, preventing photon localization, bistability
and symmetry-breaking states should become un-
achievable in the driven-dissipative system.

C. Symmetry-Breaking Bistability

The optical bistability of the single JC model ex-
tends to the two cavity system for low cavity cou-
pling values. Intuitively, symmetry-breaking states
must arise from the bistable regions of the two cav-
ity system, as there must be at least two possible
solutions in order for the cavities to reach differ-
ent steady states. Assuming no interaction between
the cavities, J = 0, recovers the same bistability
as the single cavity. When photon hopping is al-
lowed, a two cavity state equation derived from the
semiclassical equations predicts bistability as long as
symmetry is preserved (α1 = α2). The symmetry-
preserving state equations for non-dispersive and
dispersive systems are

E = iα(κ− i(Δω − J) +
g2(γ/2 + iΔω)

γ2/4 + Δω2 + 2g2|α|2 )

E = iα(κ− i((Δω − J)− g2

δ
(1 +

4g2

δ2
|α|2)−1/2)

(29)

Although the state equations provide a conve-
nient way to demonstrate bistability, symmetry-
breaking state equations are difficult to derive. In-
stead, the semiclassical equations must propagated
from proper initial conditions to reach symmetry-
breaking steady states, typically within the bistable
region for small cavity coupling values. The pho-
ton numbers for these symmetry-breaking states are
shifted slightly from the bistable solutions, as seen
in Figure 9.
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FIG. 9: Semiclassical equations propagated to steady
states for Δω/κ = 0, g/κ = 10, E/κ = 4, γ/κ = 16,
J/κ = 0.5. Solid lines show propagation of |α|2 for
cavities initialized with 9 photons (blue) and 0 photons
(red). The dotted lines mark the upper (blue) and lower
(red) symmetry-preserving steady states as predicted by
the semiclassical equations and state equation

Although symmetry-breaking states arise from the
bistable behavior of the JC model, cavity coupling
effectively shifts the bistable region when symmetry
is broken. The strength of the cavity coupling de-
termines how far the bistable region shifts. As cav-
ity coupling continues to increase, the bistable re-
gion along with its symmetry-breaking states cease
to exist. Symmetry-breaking states calculated from
the semiclassical equations are compared to the
symmetry-preserving states predicted by the state
equation in Figure 10.

FIG. 10: Symmetry-breaking and symmetry-preserving
bistability for Δω/κ = 0, g/κ = 10, γ/κ = 16. Thin
lines were produced by the state equation to show
symmetry-preserving solutions, while thick lines come
from steady states of semiclassical equations with initial
conditions α1 =

√
9, α2 = 0

As cavity coupling shifts symmetry-breaking
bistability towards lower drive strengths, there ex-

ists a region where bistability can only be ac-
complished if symmetry is broken. With a cav-
ity coupling of J/κ = 0.5, as drive strength in-
creases the number of stable solutions goes from
one (symmetry-preserving), to three (two symmetry-
breaking, one symmetry-preserving), to four (two
symmetry-breaking, two symmetry-preserving), to
two (symmetry-preserving, and finally back to one
(symmetry-preserving).

Although symmetry-breaking states can extend
past the typical bistable region, these states are not
present throughout the bistable region unless cavity
coupling is 0, in which case the two cavity system is
simply two individual, non-interacting JC cavities.
As cavity coupling increases, both the bistable re-
gion and symmetry-breaking region are restricted to
smaller ranges of drive strengths, but the symmetry-
breaking region is restricted faster.

D. Mean Field Phase Diagram

The mean field phase diagram for the two cav-
ity system in Figure 11 shows the regions of both
symmetry-preserving and symmetry-breaking bista-
bility. The bistability region is largest for no cavity
coupling, and reaches a critical point at J/κ = 1.55,
E/κ = 4.32 for the parameters of Figure 11. Past
this bistable region, the transition from low photon
states to high photon states is still relatively sharp,
but at no drive strength are two distinct states acces-
sible. The symmetry-breaking region tends towards
lower drive strengths as cavity coupling increases,
and disappears altogether before the typical bistable
region does.

FIG. 11: Bistability phase diagram of JC dimer for
Δω/κ = 0, g/κ = 10, γ/κ = 16. The black lines outline
the bistable region when the cavities behave identically.
The color plot shows the difference in photon number
Δn = |α1|2 − |α2|2 between the steady states with initial
conditions α1 =

√
9, α2 = 0
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As discussed previously, certain cavity coupling
strengths allow for symmetry-breaking steady states
outside of the region for symmetric bistability. This
region has two critical points, one of which locates
the disappearance of symmetry-breaking states at
J/κ = 1.14, E/κ = 4.15. The other critical point
occurs at J/κ = 0.85, E/κ = 4.03 where the cavi-
ties experience flipping of photon states resulting in
a negative Δn. Past this first critical point, in the
dark blue region of the phase diagram, the cavities
reach steady states opposite of their initial states.
In the mean field interpretation, at some point in
time the two cavities have the same number of pho-
tons but still reach steady state with broken symme-
try. The propagation of the semiclassical equations
in this region is shown in Figure 12.

FIG. 12: Propagation of semiclassical equations
demonstrating symmetry flipping for the JC dimer for
Δω/κ = 0, g/κ = 10, γ/κ = 16. The parameters
E/κ = 4.048, J/κ = 0.92 place this system in the dark
blue region of Figure 11.

Note that there is only one symmetry-preserving
solution for the parameters used in Figure 12, as
it is outside the region of bistability shown in the
phase diagram. All steady states where the cavities
flip from their initial conditions are only possible
outside the bistable region for the JC dimer. Al-
though the steady state Δn settles around 3 pho-
tons in Figure 12, immediately after the cavities
flip high and low photon number states Δn remains
small before eventually the solutions diverge. It is
reasonable to expect quantum fluctuations to eas-
ily disrupt this propagation. However, there may be
parameter regimes that exhibit the same symmetry
flipping behavior at higher photon numbers where
quantum fluctuations would not easily cause switch-
ing between solutions. This behavior is not unique
to the dimer; in the three cavity system it is more
pronounced and becomes a distinguishing feature, as

discussed in Section VI.

E. Dispersive JC Dimer

Quantum trajectories in the dispersive regime ex-
hibit clear symmetry-breaking behavior in the two
cavity system. Just as slightly offsetting the frequen-
cies of the cavity and atom recovers mean field bista-
bility for the single cavity, doing so for the dimer al-
lows for symmetry-breaking states. The trajectory
shown in Figure 13 demonstrates the presence of
both symmetry-preserving and symmetry-breaking
states in a regime where all four solutions are con-
sidered stable.

FIG. 13: Quantum trajectory for JC dimer for δ/κ =
1,Δωc/κ = 3, g/κ = 10, E/κ = 2.6, γ/κ = 0, J/κ = 0.2.
The top panel shows photon number for cavity one
(blue) and cavity two (red), while the bottom panel
shows the expectation value 〈σ̂z〉 reflecting the state of
the atom

In this weak-dispersive regime (δ < g), whenever
the cavity is populated with photons the atom and
cavity field exchange energy, causing the oscillations
near 〈σ̂z〉 = 0. In the vacuum state, there is no
energy to exchange, leaving the atom close to its
ground state. Therefore knowing the state of the
atom also determines the state of the cavity field,
and vice versa. This also means that although the
atoms do not interact directly like the cavity fields,
they are indirectly coupled through photon hopping.
In this particular quantum trajectory, with relatively
weak cavity coupling compared to atom-light cou-
pling J/g = 0.02, the system happens to have bro-
ken symmetry more often than preserved. At each
time step of the trajectory, the number of photons
in each cavity is compared, shown in a histogram of
Δn in Figure 14.
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FIG. 14: Photon difference, defined as Δn = n1 − n2,
at each time step in the quantum trajectory shown in
Figure 14. An arbitrary scale is used for the vertical
axes

The two side peaks in Figure 14 correspond with
times during the trajectory when one cavity was in
a high photon state and the other was in a low pho-
ton state. For larger cavity coupling, symmetry-
breaking states are less accessible so the side peaks
are not as high but their presence still indicates
symmetry-breaking bistability.

Just as in the the non-dispersive case, the photon
number is shifted by the cavity coupling when sym-
metry is broken. In this regime, however, broken
symmetry shifts the upper photon number to lower
values rather than higher. Analysis of the quan-
tum trajectory in Figure 15(c) shows how the pho-
ton number is slightly shifted for symmetry-breaking
states compared to symmetry-preserving ones.

FIG. 15: (a) Semiclassical state equation compared with master equation for δ/κ = 1000, Δωc/κ = 18, g/κ = 150,
γ/κ = 0.084, J/κ = 0.1 with the blue dashed line marking the drive strength used for the quantum trajectory shown
in panels (b) and (c) E/κ = 3.21. (b) Distribution of photon number for symmetry-preserving (Δn < 3) and
symmetry-breaking (Δn > 3) states taken at each time step in the trajectory shown in panel (c). (c) Portion of a
quantum trajectory for the JC dimer that shows both symmetry-preserving and symmetry-breaking states for the
same parameters as panel (a) and drive strength E/κ = 3.21

Although slight, there is a discernible difference in
photon number between the symmetry-breaking and
symmetry-preserving states for the quantum trajec-
tory in Figure 15(c). For each time step in the quan-
tum trajectory, the state of the system is catego-
rized as either symmetry-preserving if Δn < 3 or
symmetry-breaking if Δn > 3. The photon distribu-
tion for each is shown in Figure 15(b), demonstrat-
ing that the bistable solutions are slightly shifted

for symmetry-breaking states. This shift increases
with cavity coupling strength until the critical point
is reached where symmetry-breaking states are no
longer accessible. Just as in Figure 13, the spin state
of the atoms always corresponds with the photon
state of the cavity field. Although the majority of
figures in this paper show only photon number, the
spins have the same high and low bistable solutions,
as well as symmetry-breaking states.
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FIG. 16: Three cavity JC array, with equal rate of
photon exchange between all cavities.

VI Three Cavity System
The scope of this paper extends to the three cavity

JC model and how its properties might extend to a
driven dissipative many body model. many body
quantum systems can be studied as linear models,
two dimensional arrays or three dimensional arrays.
Rather than a linear model, the three cavity system
considered here is arranged so that each cavity is
coupled to the other two cavities, as shown in Figure
16.
The process of scaling up to the three cavity sys-

tem is no different than scaling up to the two cav-
ity system. The dimensions of the density matrix
and all other operators increase to (2N)3 by (2N)3,
making time propagation of the master equation and
even wavefunctions extremely slow. The semiclassi-
cal equations become a system of 15 equations, in-
cluding those for the complex conjugates α∗i and β∗i .
This becomes the primary method of describing this
system, with a focus on locating interesting parame-
ter regimes and phase transitions to further examine
with full quantum treatment.

A. Three Cavity Bistability Phase Diagram

Similar to the bistability phase diagram of the JC
dimer shown in Figure 11, the semiclassical equa-
tions can be used to produce a mean field phase di-
agram for the three cavity system. The symmetry-
preserving bistability is determined by the three cav-
ity state equation and confirmed by time-evolution
of the semiclassical equations. Since symmetry is as-
sumed, the three cavity state equation is simply the
two cavity state equation with an extra factor of 2
for the coupling term.

E = iα(κ− i(Δω − 2J) +
g2(γ/2 + iΔω)

γ2/4 + Δω2 + 2g2|α|2 )
(30)

The bistability of the single many body model can
therefore be extended to any system of cavities as

FIG. 17: Bistability phase diagram for three cavity JC
model for Δω/κ = 0, g/κ = 10, γ/κ = 16. Black lines
outline the symmetry-preserving bistability region, while
the color plot shows the RMS photon difference for
initial conditions α1 =

√
9, α2 =

√
9, α3 = 0. Red lines

outline the symmetry-preserving bistability region for
the two cavity system.

long as all cavities act identically. According to the
state equation, although the size of the bistability
region depends on the number of cavities each site is
able to interact with, increasing the number of cavi-
ties available for interaction will never eliminate the
bistability region altogether. The bistability region
for a JC dimer with a cavity coupling strength of J
will be the same as for a triangular array of cavi-
ties with cavity coupling strength J/2, or as a sys-
tem that allows interactions with three other cavities
with cavity coupling strength J/3. The critical point
simply shifts to smaller cavity coupling strength val-
ues as the number of possible cavity interactions in-
creases.
Just as before, the symmetry breaking region is

determined by initializing the semiclassical equa-
tions with unequal photon numbers. In the phase
diagram shown in Figure 17, two cavities are ini-
tialized near the high photon number state, α1 =√
9, α2 =

√
9, and one cavity is initialized in a vac-

uum state α3 = 0. The color plot depicts the root
mean squared value of the photon difference between
cavities, defined as

ΔnRMS =

√
1

3
((n1 − n2)2 + (n2 − n3)2 + (n1 − n3)2)

(31)

Similar to the JC dimer, the three cavity sys-
tem has a region of ”flipped” symmetry. The crit-
ical point near J/κ = 0.5 locates where this flip-
ping behavior begins. Unlike the dimer, however,
in the three cavity system this region extends well
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past the symmetry-preserving region. In fact, the
symmetry-breaking region for the three cavity sys-
tem extends to the same cavity-coupling strength
as the symmetry-preserving region for the dimer
(J/κ = 1.58). This region can be understood as
two cavities behaving as a JC dimer, while the third
cavity behaves almost independently, with minimal
coupling to the other cavities. This is similar to the
behavior seen in the equilibrium dynamics of the JC
dimer, where the atom-light coupling competed with
the cavity coupling. In this parameter regime of the
three cavity system, the competing coupling terms
are for the two adjacent cavities.
The phase diagram in Figure 17 was produced

with two cavities initialized in a high photon state
(α1 = α2 =

√
9) and one cavity in the low photon

state (α3 = 0). A similar but not identical diagram
can be produced if one cavity is initialized in a high
photon state and the other two cavities are initial-
ized in a low photon state. The region extends to
the same cavity coupling strength (J/κ ≈ 1.58), but
the critical point where the symmetry flipping re-
gion begins occurs at a slightly different cavity cou-
pling strength. In fact, for all initial conditions that
result in symmetry-breaking steady states, the re-
gion extends to the same vanishing critical point
at J/κ ≈ 1.58, but the location of the symmetry
flipping critical point changes. For future research,
a more comprehensive bistability phase diagram in
the cavity-coupling drive-strength space should be
produced where the semiclassical equations are ini-
tialized with all possible values of each αi, forming a
symmetry-breaking region that encompasses all pos-
sible drive strength and cavity coupling values.

B. Onset of Spin Frustration

The region of ”flipped” symmetry is of particular
interest because it indicates the potential for spin
frustration in the many body model. The concept
of spin frustration has been a focus of research for
decades, particularly in the context of magnetic sys-
tems. For a lattice of interacting spins, depending
on the geometry of the lattice it is possible for a
spin to have competing interactions from adjacent
spins. Consider the well-known anti-ferromagnetic
Ising model on a triangular lattice such as the one
discussed in this section. Each site in the Ising model
is a single spin-1/2 system, limited to either a spin-
up or spin-down state, rather than a coupled cavity
field and spin-1/2 system as seen in the JC model. In
the anti-ferromagnetic model, spins minimize their
energy by aligning anti-parallel to the spin of their
neighbors. A spin surrounded by sites that are spin
up will orient itself as spin down, and vice versa.
Frustration develops when conflicting interactions
occur so that a spin site will have the same energy
no matter which way it aligns. An example of spin

frustration for the anti-ferromagnetic Ising model on
a triangular lattice is shown in Figure 18.

FIG. 18: Anti-ferromagnetic Ising model. Two spins
have already aligned themselves anti-parallel (red),
leaving the third spin in a frustrated state (blue). The
spin could align either up or down, making the states
degenerate.

In the JC model, either the spin state of the atom
or the photon state of the cavity field could be used
to study spin frustration. Considering the cavity
field, the high photon number states would be spin
up and low photon number states spin down. In
a sense the drive strength could be compared to
a magnetic field in the Ising model; for low drive
strengths the cavities have a low photon number,
considered spin down, and as the drive strength in-
creases the photon number enters a bistable region
where it either aligns as spin up or spin down, and
eventually only aligns as spin up at high photon
numbers for high drive strengths. This is not a
perfect analogy to the magnetic Ising model, but
could indicate something similar to spin frustration
nevertheless. This makes the symmetry flipping re-
gion particularly interesting, as it is similar to anti-
ferromagnetism where spins tend to align opposite
each other. Such behavior is not expected for cavity
fields that interact by exchanging photons; typically
exchange interactions lead to systems reaching equi-
librium rather than stabilize in symmetry-breaking
states.

The time-evolution of the semiclassical equations
in the flipped symmetry region are considered in Fig-
ure 19 in an effort to identify the onset of spin frus-
tration in the three cavity system. The steady state
solutions depend heavily on the initial conditions of
the three cavities, so the initial conditions for two
cavities are fixed as α1 = 3.1 and α3 = 0. This is
comparable to the diagram in Figure 18, where one
spin is initialized as spin up and the other as spin
down, and a third spin is initialized in between with
competing interactions.
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FIG. 19: Time propagation of the semiclassical equations for the three cavity system with Δω/κ = 0, g/κ = 10,
γ/κ = 16. The parameters E/κ = 4.2, J/κ = 0.7 place this system in the flipped symmetry region of the phase
diagram in Figure 17. For all four panels, the equations are initialized with α1 = 3.1, α3 = 0. The top two panels
stabilize with two cavities in high photon states, and the bottom two panels stabilize with only one cavity in a high
photon state.

In addition to identical system parameters, the
top-right and bottom-left panels have almost iden-
tical initial conditions. The ”middle” cavity, initial-
ized with a photon number between the other two
cavities, approaches the high photon number state
when initialized for all values α2 ≤ 2.55 and ap-
proaches the low photon number state for all val-
ues α2 ≥ 2.56. Near this critical value, the system
reaches steady state slower than initial conditions
near the steady states, which indicates potential spin
frustration. The spin of the middle cavity can orient
with either of the adjacent cavities, it just depends
on which solution the cavity closer to initially.

The comparison to the Ising model is not per-
fect because the JC model is not a spin-1/2 system.
When symmetry-breaking states are possible, rather
than just two possible solutions there can be as many
as six stable solutions in the three cavity system. In
general three of the solutions will have a high photon
number, and three will have a low photon number,
with slight differences depending on the state of the
other two cavities. Figure 20 shows the time propa-
gation of the semiclassical equations to six solutions,

although the three lower photon number solutions
are extremely close in value.

FIG. 20: Time propagation of the semiclassical
equations for Δω/κ = 0, g/κ = 10, γ/κ = 16,
E/κ = 4.05, J/κ = 0.2. Symmetry-preserving (blue) and
symmetry-breaking solutions for one high photon
number cavity (red) and two high photon number
cavities (yellow).
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The three low photon number solutions are close
but not equal (nblue = 0.27155, nred = 0.2777,
nyellow = 0.2594). A possible explanation for slightly
different photon numbers is the superposition of the
two bistable solutions. Although there are typi-
cally only two possible symmetry-preserving solu-
tions, when symmetry is broken the states might be
in a superposition of the high and low solutions that
results in slightly different photon numbers. This
can be better understood when compared to the
anti-ferromagnetic Ising model again, as in Figure
21.

FIG. 21: Anti-ferromagnetic Ising model on triangular
lattice. The two bottom spins want to align anti-parallel
to the top spin, but do not want to align parallel with
each other, resulting in slightly offset spin orientations

As the two bottom spins attempt to align them-
selves anti-parallel to their adjacent spins, they be-
come frustrated in a state that is not truly up or
down. In the JC model, full quantum treatment
using the master equation could potentially demon-
strate superposition of high and low photon states.
Further research into the effects of coupling addi-
tional cavities in a lattice would continue to help de-
velop the possibility of spin frustration in the many
body model.

VII Conclusion

The behavior and various properties of the sin-
gle Jaynes-Cummings model have been explored and
then extended to the two cavity dimer and three cav-
ity triangular array. Full quantum treatment using
the Lindblad master equation and individual quan-
tum trajectories have been compared to the semi-
classical treatment to analyze regions of bistability

in each system, as well as symmetry-breaking re-
gions in the dimer and three cavity system. The
dissipative quantum phase transition, understood
as the breaking down of photon blockade through
a cascade of multiphoton transitions in the reso-
nant model absent of spontaneous emission, is com-
pared to the dispersive phase transition marked by
optical bistability as predicted by mean field the-
ory. The theory of dispersive bistability in the sin-
gle JC model lays the framework for understanding
and identifying symmetry-breaking states for sys-
tems with multiple cavities. The two cavity dimer
is considered first as a closed system, with equilib-
rium dynamics indicating that regions where cavity-
cavity interactions dominate will not exhibit broken
symmetry in the open model. This is then demon-
strated in the non-equilibrium JC dimer using the
same methods as those used for the single model.
A bistability phase diagram comparing regions of
symmetry-preserving and symmetry-breaking states
is produced in the parameter space of cavity cou-
pling and drive strength. The symmetry-breaking
and symmetry-preserving states are compared us-
ing counting statistics from quantum trajectories,
demonstrating how cavity coupling shifts the steady
state photon number if symmetry is broken. The
three cavity system is then considered primarily us-
ing semiclassical treatment, which produces a bista-
bility phase diagram similar to that of the dimer,
but with an extended region of ”flipped” symme-
try. This region inspired comparison of photon num-
ber states to spin states that show frustration in
the context of magnetic systems, such as the anti-
ferromagnetic Ising model. Propagation of the semi-
classical equations in this region of flipped symmetry
suggest potential spin frustration in the many body
JC model.
The systems considered here are relatively sim-

ple compared to true many body models, allowing
for a comprehensive understanding of the quantum
behavior behind properties such as bistability and
symmetry-breaking states. Further research into the
extension of these properties to larger systems of
Jaynes-Cummings cavities will eventually unite our
understanding of the single dissipative model with
the many body non-dissipative model. The physics
explored in this paper can be applied in several di-
rections for further research through exploration of
all parameter spaces including detuning, atom-light
coupling, cavity dissipation, and spontaneous emis-
sion. Non-equilibrium physics, particularly in quan-
tum many body systems, remains as difficult to de-
scribe as it is important for the eventual applica-
tion of quantum mechanics to information manipula-
tion and quantum simulators. The physics presented
here provides a theoretical basis for any experiments
involving arrays of quantum oscillators coupled to a
spin-1/2 systems.
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Appendices

A Hamiltonian Diagonalization

The Hamiltonian can be represented as a diagonalizable matrix where the diagonal elements of the matrix
are the energy values for each configuration of the system. The Hamiltonian must encompass the entire
Hilbert space of the system, which contains all possible states of the system. The Hamiltonian is then a

(2N)m by (2N)m matrix. The Hamiltonian is the sum of all sub-Hamiltonians, so that Ĥ =
∑N

n=0 hn where

hn =

[ 〈n, ↓ |H|n, ↓〉 〈n, ↓ |H|n− 1, ↑〉
〈n− 1, ↑ |H|n, ↓〉 〈n− 1, ↑ |H|n− 1, ↑〉

]
(32)

Using the Hamiltonian from Eq. (1), each sub-Hamiltonian becomes

hn = �

[
ω0n g

√
n

g
√
n ω0n

]
(33)

In order to diagonalize the Hamiltonian, the eigenvalues, λ, of each sub-Hamiltonian must be found.

det

[
ω0n− λ g

√
n

g
√
n ω0n− λ

]
= 0 = (ω0n− λ)2 − g2n

(λ− ω0n)
2 = g2n

λ± = ω0n± g
√
n

(34)

These eigenvalues are the energy doublets associated with each set of eigenstates. The eigenvectors are
then found: [

ω0n− λ g
√
n

g
√
n ω0n− λ

] [
x1

x2

]
=

[
0
0

]

�g
√
n

[±1 1
1 ±1

] [
x1

x2

]
=

[
0
0

] (35)


x± =

[
x1

x2

]
=

1√
2

[
1
±1

]
(36)

Therefore the eigenstates for the system are

|En,±〉 = 1√
2
(|n, ↓〉 ± |n− 1, ↑〉)

with energies: En,± = n�ω0 ±
√
n�g

(37)

To complete the diagonalization of each hn, a matrix C is formed by the eigenvectors 
x± so that Dn =
C−1hnC

Dn =
�

2

[
1 1
1 −1

] [
ω0n g

√
n

g
√
n ω0n

] [
1 1
1 −1

]

Dn =

[
n�ω0 −

√
n�g 0

0 n�ω0 +
√
n�g

] (38)

The diagonalized matrix, D =
∑N

n=0 Dn, can then be used to read off energy levels and determine the
lowest energy state, i.e. the ground state.
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B Single Cavity Semiclassical Equations

A. Necessary Equations

1. Driven Jaynes-Cummings Cavity Hamiltonian

ĤJC = �Δωaσ̂
+σ̂− + �Δωcâ

†â+ �g(â†σ̂− + âσ̂+) + �E(â† + â) (39)

2. Lindblad Master Equation

ρ̇ =
1

i�

[
ĤJC , ρ] + κ(2âρâ† − â†âρ− ρâ†â) + 2γ(2σ̂−ρσ̂+ − σ̂+σ̂−ρ− ρσ̂+σ̂−) (40)

B. Equation of Motion for α = 〈â〉

α̇ = Tr[ρ̇â] =
1

i�
Tr

[
[ĤJC , ρ]â

]
+Tr[κ(2âρâ† − â†âρ− ρâ†â)â] + Tr[2γ(2σ̂−ρσ̂+ − σ̂+σ̂−ρ− ρσ̂+σ̂−)â] (41)

1

i�
Tr

[
[ĤJC , ρ]â

]
= −iTr[Δωa[σ̂

+σ̂−, ρ]â+Δωc[â
†â, ρ]â

+g[â†σ̂−, ρ]â+ g[âσ̂+, ρ]â+ E [â†, ρ]â+ E [â, ρ]â]
(42)

Looking at just the Δω terms:

iTr[Δωa(σ̂
+σ̂−ρâ− ρσ̂+σ̂−â) + Δωc(â

†âρâ− ρâ†ââ)] (43)

[â, â†] = 1

ââ† = â†â+ 1
(44)

The Δωa terms cancel because the annihilation operator â commutes with the spin operators σ̂− and σ̂+,
which makes the first two terms equivalent. We are then left with:

iΔωcTr[ââ
†âρ− â†ââρ]

iΔωcTr[(â
†â+ 1)âρ− â†ââρ]

iΔωcTr[âρ] = iΔωα

(45)

Looking at just the g terms:

−igTr[â†σ̂−ρâ− ρâ†σ̂−â+ âσ̂+ρâ− ρâσ̂+â] (46)

Once again, the last two terms cancel because the â and σ̂− operators commute. This leaves the g terms
as:

−igTr[ââ†σ̂−ρ− â†σ̂−âρ]

−igTr[ââ†σ̂−ρ− â†âσ̂−ρ]

−igTr[(â†â+ 1)σ̂−ρ− â†âσ̂−ρ)]

−igTr[σ̂−ρ] = −igβ

(47)

Where β = 〈σ̂−〉 = Tr[σ̂−ρ]
Next, looking at just the E terms:

−iETr[â†ρâ− ρâ†â+ âρâ− ρââ]

−iETr[(â†â+ 1)ρ− â†âρ]

−iETr[ρ] = −iE
(48)
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The cavity loss terms become:

κTr[2âρâ†â− â†âρâ− ρâ†ââ]

κTr[2â†ââρ− ââ†âρ− â†ââρ]

κTr[â†ââρ− (1 + â†â)âρ]

κTr[−âρ] = −κα

(49)

Finally the spontaneous emission terms all cancel because the only operators are spin operators, which
always commute with â. Combining the terms for Δωc, g, E , and κ, the equation of motion for α̇ is:

α̇ = (iΔωc − κ)α− igβ − iE (50)

C. Equation of Motion for β = 〈σ̂−〉

β̇ = Tr[ρ̇σ̂−] =
1

i�
Tr

[
[ĤJC , ρ]σ̂

−]+Tr[κ(2âρâ† − â†âρ− ρâ†â)σ̂−] + Tr[2γ(2σ̂−ρσ̂+ − σ̂+σ̂−ρ− ρσ̂+σ̂−)σ̂−]

(51)

1

i�
Tr

[
[ĤJC , ρ]σ̂

−] = −iTr[Δωa[σ̂
+σ̂−, ρ]σ̂− +Δωc[â

†â, ρ]σ̂−

+g[â†σ̂−, ρ]σ̂− + g[âσ̂+, ρ]σ̂− + E [â†, ρ]σ̂− + E [â, ρ]σ̂−]
(52)

Again, separating the terms out by their coefficient, the Δω terms are:

iTr[Δωa(σ̂
+σ̂−ρσ̂− − ρσ̂+σ̂−σ̂−) + Δωc(â

†âρσ̂− − ρâ†âσ̂−)] (53)

The Δωc terms cancel because the annihilation and reation operators â and â† don’t commute with the
σ̂− operator. Some relationships for spin operators will be useful throughout the rest of the derivation

σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
(54)

σ̂+ = σx + iσy =

[
0 1
0 0

]
σ̂− = σx − iσy =

[
0 0
1 0

]
(55)

[σ̂+, σ̂−] = σz (56)

Considering the Δωa terms again:

iΔωaTr[σ̂
−σ̂+σ̂−ρ− σ̂+σ̂−σ̂−ρ]

−iΔωaTr
[
[σ̂+, σ̂−]σ̂−ρ

]
−iΔωaTr[σzσ̂

−ρ]

(57)

σzσ̂
− =

[
1 0
0 −1

] [
0 0
1 0

]
=

[
0 0
−1 0

]
= −σ̂− (58)

iΔωTr[σ̂−ρ] = iΔωβ (59)

Looking at the g terms:
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−igTr[â†σ̂−ρσ̂− − ρâ†σ̂−σ̂− + âσ̂+ρσ̂− − ρâσ̂+σ̂−]

−igTr[â†σ̂−σ̂−ρ− â†σ̂−σ̂− + σ̂−σ̂+âρ− σ̂+σ̂−âρ]

igTr
[
[σ̂+, σ̂−]âρ] = igTr[σz âρ] = igαζ

(60)

Where ζ = 〈σz〉.
Both the drive terms and cavity loss terms are 0 because the only have photon creation and annihilation

operators which always commute with σ̂−. Finally, the spontaneous emission terms become:

γ/2Tr[2σ̂−ρσ̂+σ̂− − σ̂+σ̂−ρσ̂− − ρσ̂+σ̂−σ̂−]

γ/2Tr[2σ̂+σ̂−σ̂−ρ− σ̂−σ̂+σ̂−ρ− σ̂+σ̂−σ̂−ρ]

γ/2Tr
[
[σ̂+σ̂−]σ̂−ρ] = γ/2Tr[σ̂zσ̂

−ρ]

(61)

Where the spin operator relation σ̂zσ̂
− = −σ̂− leaves us with

−γ/2Tr[σ̂−ρ] = −γ

2
β (62)

This leaves us with the equation of motion for β as

β̇ = −i(γ
2
−Δωa)β + igαζ (63)

D. Equation of Motion for ζ = 〈σz〉

ζ̇ = Tr[ρ̇σz] =
1

i�
Tr

[
[ĤJC , ρ]σz

]
+Tr[κ(2âρâ† − â†âρ− ρâ†â)σz] + Tr[2γ(2σ̂−ρσ̂+ − σ̂+σ̂−ρ− ρσ̂+σ̂−)σ̂z]

(64)

1

i�
Tr

[
[ĤJC , ρ]σz

]
= −iTr[Δωa[σ̂

+σ̂−, ρ]σz +Δωc[â
†â, ρ]σz

+g[â†σ̂−, ρ]σz + g[âσ̂+, ρ]σz + E [â†, ρ]σz + E [â, ρ]σz

] (65)

Looking at only the Δω terms:

iTr[Δωa(σ̂
+σ̂−ρσz − ρσ̂+σ̂−σz) + Δωc(â

†âρσz − ρâ†âσz)]

iΔωaTr[σzσ̂
+σ̂−ρ− σ̂+σ̂−σzρ] = 0

(66)

If you work through the matrix multiplication, σzσ̂
+σ̂− = σ̂+σ̂−σz which means the Δωc terms cancel

(along with the Δωa terms which cancelled because the photon operators and spin operators don’t commute).
Next we look at the g terms:

−igTr[â†σ̂−ρσz − ρâ†σ̂−σz + âσ̂+ρσz − ρâσ̂+σz]

−igTr[σzσ̂
−â†ρ− σ̂−σzâ

†ρ+ σzσ̂
+âρ− σ̂+σzâρ]

−igTr[[σz, σ̂
−]â†ρ+ [σz, σ̂

+]âρ
] (67)

Knowing the following:

[σz, σ̂
+] = 2σ̂+ [σz, σ̂

−] = −2σ̂− (68)

Simplifies the g terms to

−2igTr[σ̂+âρ− σ̂−â†ρ] = 2ig(α∗β − αβ∗) (69)

Remembering that α∗ = Tr[â†ρ] and β∗ = Tr[σ̂+ρ] Since combinations of σz and the â and â† operators
can be permuted in any way, the E and κ terms cancel out to 0 just like for the β̇ equation. The spontaneous
emission terms become
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γ/2Tr[2σ̂−ρσ̂+σ̂z − σ̂+σ̂−ρσ̂z − ρσ̂+σ̂−σ̂z]

γ/2Tr[2σ̂+σ̂zσ̂
−ρ− σ̂zσ̂

+σ̂−ρ− σ̂+σ̂−σ̂zρ]

γ/2Tr
[
[σ̂+, σ̂z]σ̂

−ρ+ [σ̂z, σ̂
−]ρσ̂−]

γ/2Tr[−2σ̂+σ̂−ρ− 2σ̂+σ̂−ρ] = −γTr[2σ̂+σ̂−ρ]

(70)

Recognizing that σ̂+σ̂− = 1/2(σ̂z + 1),

−γTr[(σ̂z + 1)ρ] = −γ(ζ + 1) (71)

The equation of motion for ζ is therefore

ζ̇ = −γ(ζ + 1) + 2ig(α∗β − αβ∗) (72)

The final system of equations derived from mean field theory are

α̇ = −(κ− iΔωc)α− igβ − iE
β̇ = −i(γ

2
−Δωa)β + igαζ

ζ̇ = −γ(ζ + 1) + 2ig(α∗β − αβ∗)

(73a)

(73b)

(73c)

C Glossary

ΔωcΔωcΔωc: Detuning between frequency of the drive source and frequency of the photons in the cavity. Can be
thought of as the difference in color of the two lights

ΔωaΔωaΔωa: Detuning between frequency of the drive source and frequency associated with the energy difference
between the two spins of the atom

ΔωΔωΔω: Drive detuning, used for simplicity when Δωc = Δωa

δδδ: Detuning between the frequency of the cavity field and frequency associated with the energy difference
between the two spins of the atom. Large values of δ prevents exchanges of energy between the cavity field
and atom

ggg: Atom-light coupling coefficient, reflects the likelihood of the atom and light in the cavity interacting
through the emission/absorption of photons

EEE : Drive Coefficient, reflects the strength of the external laser. Controls the rate at which photons are
pumped into the system

Hilbert Space: contains all possible states of the system, with all combinations of photon number and
spin. The Hilbert Space for a many body JC model with m cavities with a maximum of n photons each is
(2n)m

|n, s〉|n, s〉|n, s〉: Notation to describe the system with n photons and the atom in the s state

Hamiltonian: Mathematical description of the total energy of a system. The eigenvalues of the Hamil-
tonian matrix can be solved exactly in equilibrium physics, making it possible to find the ground state of
the system.

â̂âa and â†â†â†: Annihilation and creation operators for photons in the cavity

â|n, s〉 = √n|n− 1, s〉
â†|n, s〉 = √n+ 1|n+ 1, s〉 (74)
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σ̂+σ̂+σ̂+ and σ̂−σ̂−σ̂−: Raising and lowering operators for the two-level atom

σ̂−|n,+1

2
〉 = |n,−1

2
〉

σ̂+|n,−1

2
〉 = |n,+1

2
〉

(75)

Photon Blockade: Purely quantum mechanical effect where the absorption of one photon by the cavity
blocks the absorption of a second photon. This can be extended to a multiphoton blockade, and the affect
is broadened with drive and dissipation.

Density Matrix: ρ, matrix describing the state of the system, typically used for open and dissipative
systems. Taking the trace of an operator acting on the density matrix returns an expectation value. The
density matrix describes a statistical average of an ensemble of identical systems.

ρ̂ = |n, s〉〈n, s| (76)
Expectation Value: The probabilistic expected value of a characteristic of the system. Essentially a

weighted average of all possible values, where the weight is the probability of each value.

Master Equation: Used to study the time evolution of a quantum system interacting with the environ-
ment by accounting for dissipation. Evolves the density matrix in time.

Steady State Solution: Non-equilibrium equivalent of the ground state of a system. This is the state
that the a system tends towards and then remains at once reached.

κκκ: Dissipation coefficient for cavity loss, reflecting the rate at which photons escape the cavity

γγγ: Dissipation coefficient for spontaneous emission, reflecting the rate at which the atom emits photons
outside the cavity

JJJ : Cavity coupling coefficient, reflects the rate of photon exchange between the cavities

Z: Photon Imbalance, reflecting the photon distribution in the two-cavity system. Imbalance is defined
so that if the cavity one has more photons than cavity two, imbalance is positive. If cavity two has more
photons than cavity one, imbalance is negative. If the cavities have the exact same number of photons,
imbalance is 0.

gcritgcritgcrit: critical value of atom-light coupling coefficient that marks a dynamical phase transition. Above
gcrit, photons are essentially trapped in their local cavity, with long switching times between cavities. Below
gcrit, photons are delocalized, as inter-cavity coupling dominates.

Symmetry-breaking State: A steady state solution to a system with multiple bodies with identical
parameters where all observables of the system are not identical

Superfluid Phase: In the context of the Jaynes-Cummings model, superfluid properties include delocal-
ization of photons that can flow freely through a lattice of cavities.

Mott-Insulator Phase: An integer number of photons are localized in their respective cavity.

Ising Model: Mathematical model of ferromagnetism for interacting spins arranged in a lattice. One of
the simplest statistical models with a phase transition


	cover
	SF298 Rye
	Full Trident Report unformatted

